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A Stochastic Clustering Algorithm for Panel Data
with Applications to Polling'
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ABSTRACT

Political parties commission tracking studies during election years to benchmark the 'winnability' of its slate. Data
coming from such polls constitute a panel of index measurements which can be used as inputs in formulating
campaign strategies. A non-hierarchical approach to cluster analysis can be used to segment candidates into safe,
within striking distance and losing groups using a panel of index measurements. Such grouping information can be
used in designing strategies and allocating resources.

In this paper, a stochastic version of the Kosmelj and Batagelj (1990) approach to clustering panel data is presented.
The method makes use of a probability link function in defining cluster inertias with the aim of preserving the
clusters' probabilistic structure. Given a fixed number of clusters, the optimal constitution of a set of clusters is
determined through the application of a variant of the relocation-swapping algorithm. This variant makes use of
adaptive simulated annealing in minimizing an objective function defined by the cluster inertias. Annealing ensures
location ofoptimal points using a stochastic search that terminates with probability one.
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1. Introduction

Cluster analysis is one of the most if not the most popularly used multivariate technique
in applications. This popularity stems from its distribution free nature and the variety of
problems that it treats. Recently, it has been utilized as a pattern recognition tool in projection
pursuit problems and unsupervised classification problems and is used as a benchmark in neural
network applications such as credit scoring. Aside from these popular applications, the
technique has been found useful in polling (see Bonzo, 1995). The application consists of
forming clusters of competing candidates with the purpose of forming strategic decisions such as
campaign strategies and allocation of resources. Such information is of utmost importance
especially in a highly centralized campaign strategy such as the ones being waged by big
political parties, the objective of which is to position as many of its candidates in the winners'
column.

In a typical election year, big political parties usually commission survey organizations to
track the 'winnability' of their slate of candidates, especially if the position is national in scope
such as in senatorial elections. Data coming from such tracking studies are of the cross-sectional

• and time series type, i.e, panel where each candidate's 'winnability' is measured through time.
Hence, the usual clustering procedures have to be modified so as not to ignore the effect of time.
'Winnability' here is measured in terms of a performance indices which can be a function of the
candidate's rating, i.e., the proportion of voters who are willing to vote for a candidate. These
indices differ per voting region and can change per tracking period. Hence a candidate's data
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profile is multivariate in nature and indexed by time. Based on these data, one.can draw a list of
'safe' candidates, i.e., assured of winning, and another set who are within striking distance. If a
party's candidates are within striking distance then they can throw appropriate resources to
increase the chance of the candidates to win come election time. Such will entail identifying and
working in geographic areas where the candidates' performance indices are weak.

In his application of cluster analysis to poll data panels, the author used the classificaton
approach of Kosmelj and Batagelj (1990). The approach is.non-hierarchical and made use of a

. maximal relocation-swapping algorithm to optimize cluster inertias. The cluster analysis output
was then used as a feed in determining an odds of winning scale for candidates using generalized
linear models (GUM) utilizing the logistic link function.

In this paper the clustering approach is modified further to incorporate stochastic
features. Instead of using plain distance functions, probability link functions are utilized as
indicators of object similarities. The advantage of such an approach is documented by Bacelar­
Nicolau and Nicolau (1997), especially in cases where preservation ofthe probabilistic structures
of clusters is important. The clustering problem is then presented as an optimization problem
with the objective function recast to allow the application of stochastic optimization techniques
such as adaptive simulated annealing (ASA). This technique has the advantage of ensuring that
global optima will be achieved using some statistical measures, i.e., convergence is attained with
probability one.

The plan of the paper is as follows. In section 2, the longitudinal approach to clustering
is discussed with specific concentration on probability link functions. Section 3 presents a brief
account of annealing methods and their algorithmic construction. Section 4 presents a
modification of the maximal relocation-swapping using ASA. Finally, some issues and concerns
regarding the application of the technique are discussed in section 5.

2. Longitudinal Approach to Classification

The following approach was first used by Kosmelj and Batagelj. The approach has the
advantage of flexibility, specifically in the definition of the object weights and time weights and
is applicable even for short observation times. However, instead of using distances to indicate
similarity or dissimilarity, probability link functions are used.

Consider index measurements Xjti (in p dimension) of object j at time tj, j = 1, ... ,n, 1 =

1,2, ... , T, where the ordering property

holds, Denote by X the corresponding data matrix of the index measurements. Let C be a
partition of X into c clusters, i.e.,

C = C I U C2 U ... U Cc

and the collection of such clusters as C.

\
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Corresponding to the index measurements, define auxiliary measurements Zjk as

{
I, i ECk

Zjk = 0 . C' k = 1, ... , c
, } E: k

3
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The number of units in cluster k is then denoted by ~ =I Zjk' Also denote by Z the data

.i=1

matrix of the auxiliary variables. Denote by Z.k the columns of Z, representing cluster
information and Zj. The rows of Z represent object information. Thus, Y, = In'Z.k, Y = I I1'Z and
C, = Z.k. Hence, the collection C is defined by

c " c

C = {z: I Zjk =1, I I Zjk =n }
k=1 .i=1 k=1

Define the inertia of the kth .cluster as

J, (~(Z'k » = I W k(JJ )Wk(J2 )c:5k(JI ,i2) / Wk(~)
jl<j2

where WkU) is the weight unit j and is defined as
WkU) = Wj z,

(1)

•

II

and wk (~) =I W k (J). The term 8UI, j2) is called the validation link between unit j I and jz in a
j=1

probability scale. It is sometimes called the linkage validity coefficient and can be interpreted as
a similarity probabilistic coefficient. Objects with equal pairwise link coefficients are said to
belong to the same cluster. In elementary applications, this similarity coefficient can be used as
an input to hierarchical procedures in lieu of distance coefficients.

The allocation problem looks at the optimization of the cluster inertia as given III (1).
Analytically, one is interested in minimizing the Lagrangian equation

II II C

<p(Z,A)=!(Y(Z»- I~j(l'Zj.-I)-AII+I(IIZjk-n)
j=1 j=1 k=1

(2) o

•

with respect to Z, Z E C and A where f(Y(Z» is the sum of the cluster inertias given in (1). The
optimization can move along (Y(Z), A) and then along Z as the chain rule implies to represent
relocation (and therefore the number of objects in a cluster) and swapping (and therefore cluster
membership), respectively. Details of the relocation and swapping algorithm are given in
Bonzo(1995).

For panel data applications, the coefficient is taken as

T

c:5k(J" i 2) == Ia'iP(~k(Xjl/i'Xi2Ii) ~ ~k(xilli'X.i2Ii»
i=l

(3)

•

where the x./ s are the observed values. ~k is taken as the Mahalanobis distance with respect to
the centroid and dispersion of cluster k, i.e.,
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Given data observations, Ok can be estimated by its sample version dk where

T

dkU I' J2) = La'iP(~k(Xilli,X;2Ii) s ~k(X;lli,X;2Ii))
;~I

where

~ - I -

/),.k (Xiii;' X;2Ii) = (X;II; - X kli)' S;'i(X;II; - X kli)·

(4)

and the sample mean and covariances are computed from the objects in Ck. Given appropriate

regularity conditions, ~k~ r 2 , where /),.k is distributed X?(p)· Also,

Id
k
U I' J2) - OkU I' .i2)! u.s. )0. Hence as the constitution of Ck increases, the probabilistic

structure of clusters remains intact. This is concretized in the following theorems;

Theorem 1. Suppose that Xlti, X21i E Ck and are jointly normal with identical mean Il and

variance L, with cov(XIti, X21i) = L, then ~k(Xlli,X2/;)~d /),.k(XlIi,X2,J= X
2(p)

as Y, ~ OC! •

Proof: For simplicity, the index tj is dropped in the following proof. Suppose X, and X2 are

jointly normal with

Then if we define Y; =L-1/ 2(X
i -Il), i =1,2, we have t;' Y2 =.!- Y' AY2

where

ea.

•

y=(~)

Note that Y ~ N(v, B) where v and B are defined as

v = (0) and B = (~P II') .
o I' II'

•

•



Now, we estimate ~ by X and L by S. Thus by WLLN, X~ J1 and S~ L. If we let t

= 11' and T = 11'11" we have
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(X. - X)' sol (X2 - X) = (X, - u)' (L- t + 01'(1) T )(X2 -~) + (Xi -~)' (L- t + 01'(1) T) t 01'(1)
+ 01'(1) t' (L- t + 01'(1) T )(X2 -~) + 01'(1) t' (Lot + 01'(1) T) t 01'(1)
= (XI - ~)' L-\X2 - u) + 01'(1)

In Theorem 1, the constraining assumption is the joint normality of the data. With large sample

sizes this assumption can be dropped and the result will still hold, i.e., Llk(Xlli,X2IJ ~d

Llk(Xllj,X2tJ as Yk~ 00.

A

Theorem 2. Let d, be the 'estimator' of 15k with Llk(X'ti' X 21J in dk 'estimating' Llk(X'ti'X2IJ in

15k. Then IdkU I, h) - 8kU I, j2) I~a.s. O. For j I, j2, E Ck.

Proof: Consider
T

IdkUt,j2) - 8kUI,j2) I~ La,ilFYk - FI
;=1

where
A A

r; = P(Llk(Xjlti'Xi2IJ ~ Llk(Xilt;'Xj2IJ).. ..

F = P(Llk(XjltPXj2Ii) ~Llk(Xjlti'Xj2ti))

Let FYk the empirical distribution function of Llk(X1ti'X2tJ constructed from pairs (Xjlti, Xj2ti) in

cluster c; Thus,

FYk - F = 01'(1) and FYk - F = 01'(1)

together imply that FYk - FYk= 01'(1). Thus,'

From the Glivenko-Cantelli theorem, SUPtEIlI FYk(t) - F(t)l~a.s. O. Hence, SUPtElIlFYk (t) - F(t)j
~a.s. 0 and thus the result.

3. Simulated Annealing and Its Variants

The optimization technique known as simulated annealing (SA) borrowed concepts from
the physical process known as annealing. In order to avoid metastable states produced by
quenching, metals are often cooled very slowly. This allows the metals to order themselves into
stable, structurally strong, low energy configurations. Annealing then gives, the opportunity to
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jump out of local minima with-a reasonable probability while the temperature is still relatively
high.

Simulated annealing has been successfully applied to optimization problems involving
integers and has been reformulated to suit general purpose optimization problems. The
mathematical interpretation of annealing is a cooling schedule in a decreasing function of time.
It has been shown that SA is a random walk with bias.

As described by Ingber (1993), SA consists of three functional relationships: g(y), the
probability density of a state space of D parameters Y = { YO), i = 1, ... , D}; h(~E), the
probability for acceptance of a new cost function given in the previous value; T(l), the schedule
of 'annealing' the 'temperature' T in annealing time steps 1, i.e., changing the volatility or
fluctuations of one or both of the two previous probability densities.
One variant of the SA is called the Boltzmann annealing (BA). The method utilizes the Gibbs •
distribution

1
G(y) = Z exp{-H(y) / T}

where

z = Lexp{-H(y)}.
y

H is a Hamiltonian operator whose derivative defines the acceptance of the new cost function in
defining the probabilities of the state parameters Y. The Hamiltonian of a system specifies its
total energy, i.e., the sum of the kinetic energy and its potential energy, in terms of the
Lagrangian function derived in earlier studies of dynamics and of the position and momentum of
each of the particles. The scheduling is made such that T is selected no faster than

where To is large enough.

ToT(1)=-
In(1) (5)

•

In optimizing f (minima), a typical algorithm for a continuous nonlinear annealing with a
finite termination is given as follows:

0. Initialize (T, y) and set 1= 0.
1. Generate another vector w from y (in its neighborhood).
2. Iff(w) - f(y)::; 0, accept w as the new state. •
3. Else, if e-(f(lt')-f(y»)/1'(I) > u (generated from D(0,1)), then accept w as the new state and

set y = w.
4. Lower TO) to T(l+1) and increment 1.
5. If I s L, go to step 1.
6. Report all points y for which the best function value is achieved.

In the above algorithm, step 5 guarantees termination. In the absence of 5, termination is
assured with probability 1. Satisfaction of the condition in step 2 means that a better value for f
is achieved. Step 3 (annealing step) specifies the acceptance criterion and note that the structure

•
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(6)
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is of the Gibbs type with h(~y) = few) - fey). In this case, the probability of acceptance is
e-h

(6
y

)I T(I ) . Increasing T(l) in step 4 has the effect of increasing the acceptance probability in
step 3 and thus guaranteeing convergence.

In some instances the convergence may be painfully slow and therefore a revision of the
annealing step may be necessary. Such a revision involves the schedule T(l) to speed lip the
search of the optimum value. This procedure is known as quenching. The procedure in (5) can
be modified to allow a logarithmic schedule, i.e.,

where 10 is a starting index, or an exponential schedule such as

T(l) = 'To exp{(c -1)1}, 0 < c < 1
for expediency sake.

Adaptive simulated annealing (ASA) considers the parameter YI(i) in dimension i
generated at annealing time I with range y,(i) E (Ai, Bi) calculated with the random variable v(i) as

YI+I(i) = YI(i) + v(i) (B j - Ai)

where V(i) E [-1, 1].

Define he generating function

IJ

TI ; (i)
gT(V) = gAv)

;=1

where gT(i) is the marginal ofv(i) and

vi

G/)(v(i») = fg~)(r)dr
-I

•
=

•

Here, v(i) is generated from U(i) with U(O, 1) disribution, i.e.,

VIi) = sgn(u(i) -1/2)1;((1 + 1/ 'T;)1211(i)-11 -1]-
Clearly, the annealing schedule can be shown to satisfy

(7)
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(8)

One can choose Cj to be equal to rj expj-s./D} where rj and Sj are 'free' parameters to help tune
ASA for specific problems.

4. A Revised Algorithm

The alternating relocation-swapping algorithm used to find the optimal non-hierarchical
clustering constitution can be modified using ASA concepts. Given the function <p(Z,A) in (4),
consider y = ( y(Z), A), the state parameters. Here, D = k + n +1. Then the annealing algorithm
can be modified as follows.

a. Given values rj and s, at annealing time 1 and bound L, choose the schedule according to •
(8) and iniialize y.

1. Generate a random vector w using (6) where v is given in (7).
2. If <pew) - <p(y) ::; a, accept w as a new state and set y= w.
3. Else, if exp{ -(<pew) - <p(y))/T(l) > D(a,1), then accept was the new state and set y=w.

4. Obtain Zfrom Z by swapping elements of Ck's such that y( Z) = y(Z). Retain Z if rp

(y(Z)) - <p(y(Z)) < a.
5. Do step 4 until it is not possible to improve <p(y( Z)) anymore.
6. Lower TO) to TO + 1) and increment 1.
7. If i ::; L, go to step 1.
8. Report all points y for which <p is lowest.

Note that steps 4 and 5 incorporate the swapping idea in non-hiearchical clustering
procedures and thus is a main point of variation in traditional ASA applications. Also, the steps •
can take a while, especially if the number of objects n is large. One .can improve on these steps

by retaining the best Z structure in the previous step.

5, Some Concerns

The clustering algorithm developed in section 4 has the non-hierarchical case as the
.: principal application. The technique is basically stochastic in nature and the method flexible and

general enough. Its desirability also hinges on the preservation of the probabilistic structure of
the clusters. However, there are numerous areas in which the approach can be reconfigured.
These then would dictate future research directions.

•First, it would be informative to know how small sample sizes can affect the clustering
results. This evaluation can be done by. assessing the bias and misspecifications that may arise in
applications. Results of the evaluation can then be used for adjustment purposes in order to male
the technique robust.

The second area of improvement concerns the determination of the object weights Wk(j).
Statistical ideas such as the introduction of minimization criterion in determining the weights can
be used. The Bayesian approach in selecting Wk(j) can also be explored. The effect of such
choices (both object and time weights) and the distances, either singly or in combination on the

•
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actual clustering can then be evaluated especially in confirmatory problems. The effect of the
choice of weight can be evaluated in terms of its impact on the speed of the algorithm, as well as
how it affects cluster structure. One interesting aspect of this evaluation is the investigation of
classes of 'smooth' functions from which the weights can be chosen from to ensure robustness.

The effect of missing data can also be looked at especially in the case when X is
unbalanced. If imputation is done, bias evaluation should show the extent to which the cluster
preservation objective was affected so that appropriate adjustments canbe developed.

The constant ati basically determines the degree of importance that one attaches to
observations taken at time ti. The usual approach is to adopt a geometric determination of the
constants with the more recent observations receiving the higher weights. As in the case of the
object weights, one can apply statistical ideas to optimally choose the weighting pattern. Of
specific interest is the case when T is large. The question then is to determine at what time
points are to be dropped, i.e., which ati will be set to zero.

In the definition of (k in (2), one can choose a robust alternative to D.k in (3) such as L 1

distances. Measures of data depth such as in Liu and Singh (1993) can be used. It is well known
that the effect of outliers is a function of the dimensionality of the data..

The preservation of the probabilistic structure of the clusters can easily be guaranteed by
an lID structure among the index measurements. However, in the polling application, especially
in the case of well-coordinated campaigns, these measurements are highly dependent. Forms of
regularity conditions that will guarantee probabilistic structure preservation are of interest.

Lastly, since the viability of the annealing algorithm is a function of the annealing
schedule, proper choice of the free parameters ri and Sj is necessary. In this regard, simulation
studies can be conducted to come up with heuristics, more importantly iri cases when the number
of clusters c is large.
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